Home Forschung AG Elastography Selected Projects
Über uns
Minimalinvasive Tumortherapie
Aktuelle Stellenausschreibungen
Ipek-Ugay 20.01.2019 

Selected Projects

Real-time signal processing for time-harmonic ultrasound elastography

Background: The measurement of tissue stiffness by elastography is increasingly used as a noninvasive biomarker for hepatic fibrosis. Various elastography methods have been developed for MRI or ultrasound, which rely on the mechanical stimulation of soft tissue by static deformation or dynamic waves. To date MRI elastography (MRE) is the most accurate imaging modality for staging hepatic fibrosis. MRE exploits time-harmonic vibrations which are able to induce shear waves into the whole body.

Problem: MRE suffers from long scan times particularly for cardiac applications. Synchronization to the heart beat requires repetitive mechanical excitations and MRI signal acquisitions. Therefore, the Charité group invented steady-state MRE with fractional motion encoding [1]. In principle, the same elastodynamic information of myocardial stiffness alterations during the heart beat can be acquired by ultrasound, however, at a fraction of time and costs imposed by MRE.

Proposed solution: We developed an A-line cardiac ultrasound elastography system and a real-time processing algorithm capable to analyze shear wave amplitudes. It is known from cardiac MRE that externally induced shear wave amplitudes decrease during myocardial contraction and re-increase while the heart wall is relaxed. The principle of time-harmonic ultrasound elastography has been studied in the hearts of healthy volunteers [2] and is being extended to other organs such as the liver. In the liver, inversion of the captured complex shear waves is required for the reconstruction of quantitative elasticity values (see figure 1).


Figure :
automatically fitting of a model function to the liver-shear wave (healthy volunteer, 30 Hz vibration frequency). The result of this operation is the shear wave speed c which correlates with the quantitative elasticity values.


[1] Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 2007;57(2):388-395.

[2] Tzschätzsch H, Elgeti T, Rettig K, Kargel C, Klaua R, Schultz M, Braun J, Sack I. In Vivo time harmonic elastography of the human heart. Ultrasound Med Biol 2012;38(2):214-222.

Prof. Dr. Ingolf Sack
 Matrix in Vision
Die DFG fördert einen umfangreichen Sonder-forschungsbereich zum Thema extrazelluläre Matrix. Sprecher ist Prof. Dr. B. Hamm. Mehr lesen....
 PD Dr. Fallenberg - DEGUM Stufe III
Nachdem Frau PD Dr. Eva Maria Fallenberg aus der Klinik für Radiologie der Charité auf dem diesjährigen Deutschen Röntgenkongress zur Vorsitzenden der ...
Prof. Dr. B. Hamm wurde als Ehrenmitglied der Deutschen Röntgen-gesellschaft aufgenommen. Mehr lesen...
 Graduiertenkollegs BIOQIC der DFG
Wir freuen uns über die Einrichtung des Graduiertenkollegs BIOQIC der DFG (GRK2260) an der Radiologie der Charité!
Informieren Sie sich über unser Spezialgebiet: Minimal-invasive Tumortherapie (MITT)!
 Projektförderung Experimentelle Neuroradiologie
Projektförderung für das Team von Dr. med. Omar Dzaye Ph.D.
alle Nachrichten
Home   Site Map   Impressum   Kontakt   Top    Copyright © 2003-2010 Charité
entwickelt und betreut von Martin Fischer