Metanavigation:

Hier finden Sie den Zugang zur Notfallseite, Kontaktinformationen, Barrierefreiheits-Einstellungen, die Sprachwahl und die Suchfunktion.

Navigation öffnen
Logo QILAB

QILAB

Radiological imaging contains enourmous amounts of information, much of which cannot be seen with the naked eye. This information is currently not routinely analyzed during the radiological interpretation process but contains valuable anatomical and pathological information. These data can be used to better detect and classify variants, diseases and can lead to quicker or improved treatment of diseases. Our group focusses on quantitative methods such as image analysis using Radiomics and Deep Learning (AI) to develop quantitative imaging biomarkers.

Sie befinden sich hier:

Arbeitsgruppenleiter

Publikationen (Auswahl):

Metadata-independent classification of MRI sequences using convolutional neural networks: Successful application to prostate MRI.

Baumgärtner GL, Hamm CA, Schulze-Weddige S, Ruppel R, Beetz NL, Rudolph M, Dräger F, Froböse KP, Posch H, Lenk J, Biessmann F, Penzkofer T.

Eur J Radiol. 2023 Sep;166:110964. doi: 10.1016/j.ejrad.2023.110964. Epub 2023 Jul 8.

 

Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI.

Hamm CA, Baumgärtner GL, Biessmann F, Beetz NL, Hartenstein A, Savic LJ, Froböse K, Dräger F, Schallenberg S, Rudolph M, Baur ADJ, Hamm B, Haas M, Hofbauer S, Cash H, Penzkofer T.

Radiology. 2023 May;307(4):e222276. doi: 10.1148/radiol.222276. Epub 2023 Apr 11.

Inter-Reader Variability Using PI-RADS v2 Versus PI-RADS v2.1: Most New Disagreement Stems from Scores 1 and 2.

Beetz NL, Haas M, Baur A, Konietschke F, Roy A, Hamm CA, Rudolph MM, Shnayien S, Hamm B, Cash H, Asbach P, Penzkofer T.

Rofo. 2022 May 11. doi: 10.1055/a-1752-1038.

 

Automatized Hepatic Tumor Volume Analysis of Neuroendocrine Liver Metastases by Gd-EOB MRI-A Deep-Learning Model to Support Multidisciplinary Cancer Conference Decision-Making.

Fehrenbach U, Xin S, Hartenstein A, Auer TA, Dräger F, Froböse K, Jann H, Mogl M, Amthauer H, Geisel D, Denecke T, Wiedenmann B, Penzkofer T.

Cancers (Basel). 2021 May 31;13(11):2726. doi: 10.3390/cancers13112726.

 

ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging.

Penzkofer T, Padhani AR, Turkbey B, Haider MA, Huisman H, Walz J, Salomon G, Schoots IG, Richenberg J, Villeirs G, Panebianco V, Rouviere O, Logager VB, Barentsz J.

Eur Radiol. 2021 May 15. doi: 10.1007/s00330-021-08021-6

 

A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data

Salg GA, Ganten MK, Bucher AM, Kenngott HG, Fink MA, Seibold C, Fischbach RE, Schlamp K, Velandia CA, Fervers P, Doellinger F, Luger A, Afat S, Merle U, Diener MK, Pereira PL, Penzkofer T, Persigehl T, Othman A, Heußel CP, Baumhauer M, Widmann G, Stathopoulos K, Hamm B, Vogl TJ, Nikolaou K, Kauczor HU, Kleesiek J.

NPJ Digit Med. 2021 Apr 12;4(1):69. doi: 10.1038/s41746-021-00439-y.

 

A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study.

Winkel DJ, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst JA, Rodríguez-Ruiz A, Huisman H, Szolar D, Shabunin I, Choi MH, Xing P, Penzkofer T, Grimm R, von Busch H, Boll DT.

Invest Radiol. 2021 Mar 18. doi: 10.1097/RLI.0000000000000780

 

Joint Imaging Platform for Federated Clinical Data Analytics

Scherer J, Nolden M, Kleesiek J, Metzger J, Kades K, Schneider V, Bach M, Sedlaczek O, Bucher AM, Vogl TJ, Grünwald F, Kühn JP, Hoffmann RT, Kotzerke J, Bethge O, Schimmöller L, Antoch G, Müller HW, Daul A, Nikolaou K, la Fougère C, Kunz WG, Ingrisch M, Schachtner B, Ricke J, Bartenstein P, Nensa F, Radbruch A, Umutlu L, Forsting M, Seifert R, Herrmann K, Mayer P, Kauczor HU, Penzkofer T, Hamm B, Brenner W, Kloeckner R, Düber C, Schreckenberger M, Braren R, Kaissis G, Makowski M, Eiber M, Gafita A, Trager R, Weber WA, Neubauer J, Reisert M, Bock M, Bamberg F, Hennig J, Meyer PT, Ruf J, Haberkorn U, Schoenberg SO, Kuder T, Neher P, Floca R, Schlemmer HP, Maier-Hein K.

JCO Clin Cancer Inform. 2020 Nov;4:1027-1038. doi: 10.1200/CCI.20.00045.

 

Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer

Rudolph MM, Baur ADJ, Cash H, Haas M, Mahjoub S, Hartenstein A, Hamm CA, Beetz NL, Konietschke F, Hamm B, Penzkofer T.

Sci Rep 2020, doi: 10.1038/s41598-020-72544-z

Optimizing size thresholds for detection of clinically significant prostate cancer on MRI: Peripheral zone cancers are smaller and more predictable than transition zone tumors.

Mahjoub S, Baur ADJ, Lenk J, Lee CH, Hartenstein A, Rudolph MM, Cash H, Hamm B, Asbach P, Haas M, Penzkofer T.

Eur J Radiol. 2020 Aug;129:109071. doi: 10.1016/j.ejrad.2020.109071. Epub 2020 May 17. PMID: 32531720.

 

Validation of the PI-RADS language: predictive values of PI-RADS lexicon descriptors for detection of prostate cancer

Rudolph MM, Baur ADJ, Haas M, Cash H, Miller K, Mahjoub S, Hartenstein A, Kaufmann D, Rotzinger R, Lee CH, Asbach P, Hamm B, Penzkofer T.

Eur Radiol. 2020 Mar 26. doi: 10.1007/s00330-020-06773-1. PMID: 32219507

 

Prostate Cancer Nodal Staging: Using Deep Learning to Predict 68Ga-PSMA-Positivity from CT Imaging Alone.

Hartenstein A, Lübbe F, Baur ADJ, Rudolph MM, Furth C, Brenner W, Amthauer H, Hamm B, Makowski M, Penzkofer T.

Sci Rep. 2020 Feb 25;10(1):3398. doi: 10.1038/s41598-020-60311-z.

 

Safety Analysis of Iobitridol as a Nonionic Contrast Medium: A Postmarketing Multicenter Surveillance Study With 94,960 Patients Almost 20 Years After Introduction.

Gorodetski B, Heine O, Wolf M, Collettini F, Hamm B, Darmon-Kern E, Penzkofer T.

Invest Radiol. 2020 Mar;55(3):144-152. doi: 10.1097/RLI.0000000000000620.

 

[Artificial intelligence and radiomics in MRI-based prostate diagnostics].

Hamm CA, Beetz NL, Savic LJ, Penzkofer T.

Radiologe. 2020 Jan;60(1):48-55. doi: 10.1007/s00117-019-00613-0. Review. German. PMID: 31802148

 

Evaluation of prostate MRI: can machine learning provide support where radiologists need it?

Baur ADJ, Penzkofer T.

Eur Radiol. 2019 Sep;29(9):4751-4753. doi: 10.1007/s00330-019-06241-5. Epub 2019 May 9. PMID: 31073858

 

Validation of Prostate Imaging Reporting and Data System Version 2 for the Detection of Prostate Cancer.

Hofbauer SL, Maxeiner A, Kittner B, Heckmann R, Reimann M, Wiemer L, Asbach P, Haas M, Penzkofer T, Stephan C, Friedersdorff F, Fuller F, Miller K, Cash H.

J Urol. 2018 Oct;200(4):767-773. doi: 10.1016/j.juro.2018.05.003. Epub 2018 May 5. PMID: 29733838

 

L1Base 2: more retrotransposition-active LINE-1s, more mammalian genomes.

Penzkofer T, Jäger M, Figlerowicz M, Badge R, Mundlos S, Robinson PN, Zemojtel T.

Nucleic Acids Res. 2017 Jan 4;45(D1):D68-D73. doi: 10.1093/nar/gkw925. Epub 2016 Oct 18. PMID: 27924012 Free PMC Article